Билет №20

1. РВГ (дорезонансный режим) Стр. 131-134

Двухстепенной роторный вибрационный гироскоп (РВГ) — один их первых вибрационных гироскопов, нашедших промышленное применение (рис. 73). Основные элементы РВГ: ротор 1, торсионы 2, датчики угла 5 и 8, вал 6, двигатель 7, датчики момента 3 и 4. РВГ может работать в двух режимах: 1) дорезонансном при $\omega_0 \ll \dot{\phi}_0$, где ω_0 — собственная частота незатухающих колебаний ротора; $\dot{\phi}_0$ — угловая скорость (час-

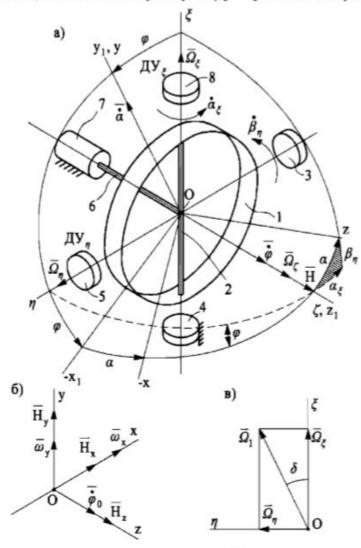


Рис. 73. Схема РВГ

тота вращения) ротора; 2) резонансном при $\dot{\phi}_0 = \omega_0$, измеряя составляющие угловой скорости объекта Ω_ξ и Ω_η . При первом режиме постоянные составляющие сигнала с $\mathcal{Д} \mathcal{Y}_\eta$ и $\mathcal{L} \mathcal{Y}_\xi$ пропорциональны Ω_ξ и Ω_η , при втором постоянные составляющие сигнала с $\mathcal{L} \mathcal{Y}_\eta$ и $\mathcal{L} \mathcal{Y}_\xi$ пропорциональны Ω_η и Ω_ξ .

Принцип измерения угловой скорости заключается в том, что гироскопический момент уравновешивается упругим моментом торсионов (за целый оборот ротора), к которому добавляется центробежный момент инерции ротора. Составим уравнение движения РВГ, руководствуясь правилом гироскопического момента (с методической целью). Выберем СК: $O\xi\eta\zeta$ связана с корпусом прибора (объектом), Ox_1y_1z — с валом, Oxyz — с ротором (рис. 73, a).

Примем основные допущения: $\dot{\varphi} = \dot{\varphi}_0 = \text{const}$; угол α — мал; $H_z = C\dot{\varphi}_0$ — кинетический момент гироскопа; C — осевой момент инерции ротора. Составим уравнение движения ротора вокруг оси торсионов Oy, учитывая момент инерции $B\dot{\omega}_y$ ротора (B — момент инерции ротора относительно Oy), гироскопический момент $H_z\omega_x - H_x\omega_z$ (рис. 73, δ), внешний момент $M_y = -K\alpha - D\dot{\alpha} + M_{ynp}$ (K — угловая жесткость торсионов; D — удельный демпфирующий момент). Момент M_y содержит вредные моменты M^{BP} и управляющие моменты M_{ynp} при наличии обратной связи (в этом случае РВГ должен иметь датчики момента по осям $O\xi$ и $O\eta$). Суммируем моменты:

$$-B\dot{\omega}_y + H_z\omega_x - H_x\omega_z - K\alpha - D\dot{\alpha} + M_y = 0, \tag{88}$$

где $\omega_y = \dot{\alpha} + \Omega_\xi \cos \varphi + \Omega_\eta \sin \varphi$;

$$\begin{split} \dot{\omega}_y &= \ddot{\alpha} - \dot{\phi}(\Omega_\xi \sin \phi - \Omega_\eta \cos \phi) + \dot{\Omega}_\xi \cos \phi + \dot{\Omega}_\eta \sin \phi; \\ \omega_x &\approx \Omega_\xi \sin \phi - \Omega_\eta \cos \phi - \dot{\phi}_0 \alpha; \end{split}$$

 $H_x = A\omega_x$ (А — момент инерции ротора относительно оси Ox). Раскроем уравнение (88) при $\dot{\phi} = \dot{\phi}_0$, $M_y = M_y^{\text{вр}}$:

$$B\ddot{\alpha} + D\dot{\alpha} + [K + (C - A)\dot{\phi}_0^2]\alpha = (C + B - A)\dot{\phi}_0(\Omega_{\xi}\sin\varphi - \Omega_{\eta}\cos\varphi) - B(\dot{\Omega}_{\xi}\cos\varphi + \dot{\Omega}_{\eta}\sin\varphi) + M_y^{\text{ap}}.$$
 (89)

В уравнение (89) входят квазиупругий момент $(C-A)\dot{\phi}_0^2\alpha$, обусловленный центробежным моментом инерции ротора,

суммарная угловая жесткость $K_{\alpha} = K + (C - A) \dot{\phi}_0^2$ и кинетический момент гироскопа $H = (C + B - A)\dot{\phi}_0$.

При $M_y^{\rm sp}=0$, $\Omega_\xi={
m const}$, $\Omega_\eta={
m const}$ уравнение (89) имеет вид

$$B\ddot{\alpha} + D\dot{\alpha} + K_{\alpha}\alpha = H(\Omega_{\xi}\sin\varphi - \Omega_{\eta}\cos\varphi). \tag{90}$$

Статическое решение уравнения (соответствует дорезонансному решению):

$$\alpha^{\star} = \frac{H}{K_{\alpha}} (\Omega_{\xi} \sin \varphi - \Omega_{\eta} \cos \varphi), \tag{91}$$

т. е. РВГ измеряет проекции угловой скорости объекта по двум осям — $O\xi$ и $O\eta$ (двухкомпонентный ДУС).

 $lpha_{\xi}$, eta_{η} в СК $O\xi\eta\zeta$; зависимости $lpha_{\xi}(lpha)$, $eta_{\eta}(lpha)$ находим из сферического треугольника на рис. 73, a: $lpha_{\xi}=\alpha\cos\phi$; $eta_{\eta}=\alpha\sin\phi$. Тогда $lpha_{\xi}=-rac{H}{2K_{\alpha}}(\Omega_{\eta}+\Omega_{\eta}\cos2\dot{\phi}_{0}t-\Omega_{\xi}\sin2\dot{\phi}_{0}t)$.

Постоянная составляющая сигнала ДУ $_\xi$ $U_{\text{вых}\xi}=-h\Omega_\eta$, где $h=\frac{\kappa_{\text{ДУ}}H}{2\kappa_{\alpha}}$ — чувствительность РВГ.

Аналогично

$$\beta_{\eta} = \frac{H}{2K_{\sigma}} \big(\Omega_{\xi} - \Omega_{\xi} \cos 2\dot{\phi}_{0}t - \Omega_{\eta} \sin 2\dot{\phi}_{0}t \big).$$

Постоянная составляющая сигнала ДУ $_{\eta}$ $U_{\text{вых}\eta} = h\Omega_{\xi}$.

Ротор совершает колебания с частотой $2\dot{\phi}_0$ около положения равновесия, определяемого угловыми скоростями Ω_{ξ} и Ω_{η} ; это характерно для виброгироскопов.

Преобразуем уравнение (90) к стандартному виду:

$$\ddot{\alpha} + 2\xi\omega_0\dot{\alpha} + \omega_0^2\alpha = \frac{H}{B}\Omega_1\sin(\dot{\varphi}_0t - \delta). \tag{92}$$

Здесь $\omega_0 = \sqrt{\frac{\kappa_\alpha}{B}}$ — собственная частота РВГ; $\xi = \frac{D}{2\omega_0 B}$ — отно-

133

сительная степень затухания; $\Omega_1=\sqrt{\Omega_\xi^2+\Omega_\eta^2}$, где $\Omega_\xi=\Omega_1\cos\delta$; $\Omega_\eta=\Omega_1\sin\delta$; при этом tg $\delta=\frac{\Omega_\eta}{\Omega_\xi}$ (см. рис. 73, 6).

Общее решение уравнения (92)

$$\alpha = \lambda \frac{H}{B\omega_0^2} \Omega_1 \sin(\dot{\varphi}_0 t - \delta - \chi), \tag{93}$$

где λ — коэффициент динамичности; χ — сдвиг по фазе.

Для дорезонансного режима при $\dot{\phi}_0 \ll \omega_0 \quad \lambda \approx 1$, $\chi \approx 0$ и решение (93) совпадает с выражением (91).

2. Добротность гироскопа (для ВТГ он давал очень кратко), можно сказать про добротность ЛГ

Для ВТГ (совсем немного)

Разные коэффициенты демпфирования $d_{\rm I}$ и $d_{\rm II}$ приводят к различию потерь энергии в направлении осей I—I и II—II, т. е. к «разнодобротности» резонатора, являющейся также причиной погрешности ВТГ. Для прецизионных ВТГ достигнута добротность кварцевого резонатора $(1 \dots 2) \cdot 10^7$. Напыление электродов систем возбуждения и съема информации существенно снижает добротность.

Для лазерного гироскопа:

Важной характеристикой ЛДУС является коэффициент добротности, который учитывает отношение энергии N, поступающей в резонатор, к потерям энергии N_{π} (за счет отражения, дифракции и т. д.):

$$Q = \omega_0 \frac{N}{N_0} = 2\pi f_0 \frac{N}{N_0},$$
 (113)

где $f_0=f_{01}=f_{02}$ — частота встречных бегущих волн генерации (лучи 1 и 2) при $\Omega_{\zeta}=0$.

За время t_0 обхода лучом оптического контура L потери энергии

$$N_{\rm n}=\frac{\eta N}{t_0}=\frac{\eta Nc}{L},$$

где п — коэффициент потерь энергии.

Подставив N_n в формулу (113), получим

$$Q = 2\pi \frac{c}{\lambda} \cdot \frac{NL}{\eta Nc} = 2\pi \frac{L}{\lambda \eta} = 2\pi \frac{m}{\eta},$$

где $\lambda = 0,633$ мкм — длина волны неона.

Коэффициент η мал, поэтому добротность ЛДУС достаточно высокая ($Q \approx 10^9$) по сравнению с ВОГ, что обеспечивает высокую чувствительность ЛДУС.